ESCAPE: Extensible Service ChAin Prototyping
Environment using Mininet, Click, NETCONF and POX

Attila Csoma, Balazs Sonkoly:
Levente Csikor, Felician Németht,
Andras Gulyast
Budapest Univ. of Technology and Economics*

Wouter Tavernier, Sahel Sahhaf
Ghent University — iMinds, Ghent, Belgium

{wouter.tavernier,sahel.sahhaf}@intec.ugent.be

{csoma,sonkoly,csikor,nemethf,gulyas}@tmit.ome.hu

ABSTRACT

Mininet is a great prototyping tool which combines exist-
ing SDN-related software components (e.g., Open vSwitch,
OpenFlow controllers, network namespaces, cgroups) into
a framework, which can automatically set up and config-
ure customized OpenFlow testbeds scaling up to hundreds
of nodes. Standing on the shoulders of Mininet, we imple-
ment a similar prototyping system called ESCAPE, which
can be used to develop and test various components of the
service chaining architecture. Our framework incorporates
Click for implementing Virtual Network Functions (VNF),
NETCONF for managing Click-based VNFs and POX for
taking care of traffic steering. We also add our extensible
Orchestrator module, which can accommodate mapping al-
gorithms from abstract service descriptions to deployed and
running service chains.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations— Network management

Keywords
Service chain; Prototyping; SDN; Mininet; Click; NETCONF

1. INTRODUCTION

The concept of service chaining is not new but due to
the networking revolution driven by SDN, it seems to re-
magnetize the research/networking community [1]. A typi-
cal service consists of a series of service functions, tradition-
ally implemented by middleboxes that have to be traversed
in a given order by traffic flows. Service chain (or more

*MTA-BME Future Internet Research Group
TMTA-BME Information systems research group

#This work was conducted within the framework of the FP7
UNIFY project, which is partially funded by the Commis-
sion of the European Union.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

SIGCOMM’ 14, August 17-22, 2014, Chicago, IL, USA.

ACM 978-1-4503-2836-4/14/08.

http://dx.doi.org/10.1145/2619239.2631448.

125

generally service graph) is an abstraction to describe high
level services in a generic way and to assemble processing
flows for given traffic. Today’s service deployment, service
provisioning and service chaining have several limitations
in terms of dynamics, flexibility, scalability, optimal usage
of resources, as the built-in mechanisms are strongly cou-
pled to the physical topology and the capabilities of spe-
cial purpose, expensive hardware elements. As a conse-
quence, configuring/deploying/operating service chains is a
complex task and usually requires human interaction (the
main problems are highlighted in [1]). In order to address
these issues, different activities and research projects have
been initiated. For instance, a dedicated working group
(Service Function Chaining Working Group) has been es-
tablished by the IETF dealing with several aspects of the
service chaining architecture. The Network Functions Vir-
tualization (NFV) group within ETSI aims at providing
software-based telecommunication services, which can run in
virtualized environment on a wide range of server hardwares
instead of special purpose proprietary appliances. UNIFY
(http://www.fp7-unify.eu) is an EU-funded FP7 project,
which aims at unifying Cloud and carrier networks by devel-
oping an automated, dynamic service creation architecture
based on a dynamic fine-granular service chaining model
leveraging Cloud virtualization techniques and SDN.

In this demonstration, we present ESCAPE, our prototyp-
ing framework developed to the UNIFY architecture. Our
system makes use of well-known, widely used tools, such as
Mininet [2], Click [3], POX, and NETCONTF, integrated into
a common framework. An extensible Orchestrator module
is also added, which makes our framework capable of set-
ting up and configuring service chains on demand, mapping
VNF's into physical resources, steering traffic according to
chains’ policies, and providing real-time management infor-
mation on running VNF's.

2. ARCHITECTURE

The architecture proposed by UNIFY consists of three rel-
evant layers enabling programmability at different abstrac-
tion levels. Service layer is aware of the service logic, handles
service requests, and is responsible for SLAs. Orchestrator
layer is the core of the framework. Based on a global net-
work and resource view, it is responsible for mapping service
requests to available resources and optimization. Infrastruc-
ture layer contains physical and virtual resources including
compute, storage and networking resources, and components
corresponding to local resource management. ESCAPE cap-
tures all these layers (Fig. 1) and provides a common plat-

http://www.fp7-unify.eu

Application Layer:
user / other provider

Mininet config |

Service Graph manage@

‘ topology editor ‘3

‘ SG editor ‘

SG config VNF mgmt

Service
Provider
Service Layer

| ‘ resource settings ‘

‘ VNF catalogue

t

‘ (Clicky)

editor

‘ Orchestrator ‘

‘ Service & resource discovery | |

Mapping
host_tracker

‘ Orchestration Layer

netconf
client

roting module:
traffic steering

=

resources

la
=

VNF catalog

discovery

[Orchestrator/Controller |

POX

netconf
agent

port:
830

VNF Container #1

dedicated
ctrl & mgmt network

port:
| 831
‘ NC port

Infrastructure

Infrastructure Layer

datapath #1

NC port]

[n1-eth1] [ni-eth2] [ni-eth3

nl-ethd
[

Host #2 |

datapath #3

host 3
process | |
hi-eth

UNIFY architecture

datapath #4

l host ||
i | process | |

Figure 1: The main components of ESCAPE with the corresponding UNIFY architecture layers. The infrastructure layer is
built on Mininet [2], which is a light-weight network emulation tool enabling agile prototyping.

form where the main steps of the service chaining process
can be controlled, configured and further developed.

Our goal is to alleviate the developers’ tedious task of set-
ting up a whole service chaining environment and let them
focus on their own work (e.g., developing a particular VNF,
implementing an orchestration algorithm or a customized
traffic steering). On the one hand, ESCAPE fosters VNF de-
velopment by providing a simple, Mininet-based API where
service graphs (SG), built from given VNFs, can be instan-
tiated and tested automatically. ESCAPE also contains a
VNF catalog, which is a built-in set of useful VNFs im-
plemented in Click. The network infrastructure consists of
OpenFlow switches (e.g., Open vSwitch) and a dedicated
easy-to-configure controller application (implemented in the
POX OpenFlow controller platform) is responsible for steer-
ing traffic between VNFs. Mininet is extended by the notion
of VNFs that can be started as processes with configurable
isolation models (based on cgroups in Linux). The establish-
ment of dedicated control network is also possible where the
management agents of the VNFs are connected to in order
to be available from the service layer.

On the other hand, ESCAPE supports the development
and the testing of orchestration components. Mininet is ex-
tended by NETCONF capability in order to support man-
aged nodes (VNF containers) hosting VNFs. For this pur-
pose, we integrate OpenYuma [4], an open-source NET-
CONF implementation, in the framework. A NETCONF
agent is responsible for managing VNF containers and as-
signed switch(es). More specifically, the agent is able to

start/stop VNFs and connect/disconnect VNFs to/from switches.

The operation of the agent is described by the YANG data
modeling language and implemented by low-level instrumen-
tation codes. It is worth noting that the migration to real

126

platforms require only the adaptation of the instrumenta-
tion part. The exposed RPCs of the agent are called from
the orchestrator (NETCONF client module) to start/stop
VNFs on demand. The paths are handled similarly by our
traffic steering module. A dedicated component maps ab-
stract service graphs into available resources based on differ-
ent optimization algorithms (which can be easily changed or
customized). Other components play a role in the automa-
tion of configuration processes. On top of these, a MiniEdit
based GUI can be used to describe service graphs with given
requirements (e.g., delay or bandwidth requirement on a
sub-graph) and test topologies (resources and topology).
During the demo, we showcase every part of the archi-
tecture in a common GUI with the following steps'. The
audience can (1) define VNF containers and the rest of the
topology, (2) use the SG editor to create an abstract service
graph where VNFs can be selected from a predefined list,
(3) initiate the SG mapping to network resources and the
deployment, (4) use standard tools to send and inspect live
traffic, and (5) monitor the VNFs with Clicky.

3. REFERENCES

[1] P. Quinn and T. Nadeau. Service function chaining
problem statement. IETF Draft, April 17, 2014.

[2] B. Lantz, B. Heller and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined
networks. In ACM HotNets 2010.

[3] E. Kohler et al. The click modular router. ACM Trans.
Comput. Syst., 18(3):263-297, August 2000.

[4] OpenYuma. https://github.com/openclovis/openyuma.

LA screencast showing a simplified version of the demo is avail-
able: http://youtu.be/8ulstYXpHJA,
http://sb.tmit.bme.hu/mediawiki/index.php/ESCAPE

http://youtu.be/8ulstYXpHJA
http://sb.tmit.bme.hu/mediawiki/index.php/ESCAPE

	Introduction
	Architecture
	References

