

This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

D3.1 Programmability framework

Dissemination level PU

Version 1.0

Due date 31.10.2014

Version date 14.11.2014

This project is co -funded

 by the European Union

ii D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Document information

Authors

iMinds ð Wouter Tavernier, Sachin Sharma, Sahel Sahhaf

ETH ð Róbert Szabó, Dávid Jocha

ACREO ð Pontus Sköldström

EHU ð Jon Matias, Jokin Garay

OTE ð George Agapiou

BME ð Balazs Sonkoly

TUB ð Matthias Rost

BISDN ð Tobias Jungel

EAB ð Ahmad Rostami, Xuejun Cai

Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

KONYVES KALMAN KORUT 11 B EP

1097 BUDAPEST

HUNGARY

Fax: +36 (1) 437-7467

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ôas isõ, and no guarantee or warranty is given that

the information is fit for any particular purpose. The above referenced consortium members shall

have no liability for damages of any kind including without limitation direct, special, indirect, or

consequential damages that may result from the use of these materials subject to any liability

which is mandatory due to applicable law.

© 2013 - 2014 by UNIFY Consortium

iii D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Revision and history chart

Version Date Comment

0.1 28-05-2014 M31-M32 document finalized and serving as starting point for this
deliverable.

0.2 16-09-2014 Update outline of the document including related work/gap analysis,
decomposition and orchestration sections.

0.3 01-10-2014 Version incl. draft for NF -FG model formalization, decomposition and
orchestration processes sections.

0.4 15-10-2014 Update of abstracted interfaces, revised sections in programmability
framework and updated gap analysis.

0.5 20-10-2014 Document released for internal review.

0.6 27-10-2014 Re-alignment with WP2 architecture terminology

0.7 03-11-2014 Integration and addressing of review comments

1.0 14-11-2014 Final release of deliverable

iv D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Table of contents

1 Introduction 15

2 Abbreviations and definitions 17

2.1 Abbreviations 17

2.2 Definitions 18

3 Architecture overview 19

3.1 Actors relevant to programmability 21

4 Programmability requirements 24

4.1 U-Sl/Sl-Or interface 25

4.2 SI-Or interface 26

4.3 Cf-Or interface 26

4.4 Or-Ca interface 27

4.5 Ca-Co interface 27

4.6 Co-Rm interface 27

5 Programmability gap analysis 29

5.1 U-Sl interface 30

5.2 Sl-Or interface 31

5.3 Cf-Or interface 31

5.4 Or-Ca interface 31

5.5 Ca-Co interface 32

5.6 Co-Rm interface 33

6 Programmability framework 35

6.1 Programmability process flows 38

6.1.1 Service Invocation: top -down 39

6.1.2 Service Confirmation: bottom -up 43

6.2 Information models according to the reference points 44

6.2.1 Bottom-up information flow 44

v D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

6.2.2 Top-down information flow 50

6.3 Specification of Service Graph 55

6.4 Specification of Network Function -Forwarding Graph 56

6.4.1 Endpoints 60

6.4.2 Network Functions 61

6.4.3 Network Elements 64

6.4.4 Monitoring parameters 65

6.5 Network Function Information Base 66

6.6 Service decomposition 73

6.6.1 NF-IB based decomposition 74

6.6.2 ControlApp-driven decomposition vs. VNF scaling 76

6.6.3 Decomposition of KQI, KPI and resource parameters and decomposition types 82

6.6.4 Decomposition example scenarios 83

6.7 Orchestration process 84

6.7.1 Orchestration scalability 86

6.7.2 NF and NF-FG Scaling 92

6.7.3 Dynamic processes 100

6.7.4 Monitoring component interaction 104

6.7.5 Resources related optimization 112

6.8 Abstract interfaces 113

6.8.1 Application -Service (U-Sl) interface 113

6.8.2 Service-Resource Orchestration (Sl-Or) interface 117

6.8.3 Resource Orchestration-Controller Adaptation (Or -Ca) interface 118

6.8.4 Controller Adaptation -Controllers (Ca-Co) interface 118

6.8.5 Controllers-Infrastructure (Co -Rm) interface 118

6.8.6 Resource Control Function-Resource Orchestration (Cf-Or) interface 120

6.9 Multi -domain aspects 121

7 Universal Node interfaces 124

7.1 Universal Node Architecture 124

7.2 UN relation to the UNIFY architecture 126

8 Programmability aspects of use cases 129

8.1 Elastic Network Function use case 129

8.1.1 Initial assumptions 129

vi D3.1 Programmability fr amework14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

8.1.2 High level use case process 129

8.1.3 Service Graph and Network Function Forwarding graph decomposition 130

8.1.4 Detailed Use case process and information flow 131

8.2 Video Content Service 138

8.2.1 Initial assumptions 139

8.2.2 Service Graph and Network Function Forwarding graph decomposition 140

9 Conclusion 141

Annex 1 Work package objectives 143

Annex 2 Related work 144

A.2.1 Multi -scope configuration and modelling frameworks 144

A.2.1.1 Remote Procedure Call frameworks 144

A.2.1.2 (Web) Interface Description Languages 144

A.2.1.3 SNMP 148

A.2.1.4 NETCONF/YANG 149

A.2.2 Infrastructure modelling frameworks 151

A.2.2.1 Common Information Model 151

A.2.2.2 Directory -Enabled Networking(-NG) 152

A.2.2.3 Network Description Language 152

A.2.2.4 RSpec 153

A.2.2.5 NDL-OWL 154

A.2.2.6 Network Markup Language 155

A.2.2.7 Infrastructure and Networking Description Language 155

A.2.3 Network Programming and Control 156

A.2.3.1 Node-level programming and Control 156

A.2.3.2 Network-level Programming and Control 164

A.2.4 Cloud Programming and Control 177

A.2.4.1 Cloud-level Programming and Control 177

A.2.4.2 Cloud Controller Overview 182

A.2.5 Service-level Programming and Control 183

A.2.5.1 CLOUDSCALE and ScaleDL 183

A.2.5.2 ETSI MANO VNF Graph model 184

A.2.6 Algorithmic Survey: The Virtual Network Embedding Problem 186

vii D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

A.2.6.1 Types of Specification 187

A.2.6.2 VNEP Settings 188

A.2.6.3 Algorithmic Approaches 189

A.2.6.4 Specific Techniques Pertaining to the UNIFY Project 189

Annex 3 Service Provider Scenario for Optimization 192

References 195

viii D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

List of figures

Figure 1.1: Core parts of the programmability framework 15

Figure 3.1: The three layered UNIFY architecture 20

Figure 3.2: Business actors in Service Programming 22

Figure 4.1: Initial interface description driving progra mmability requirements 24

Figure 4.2: A more detailed view on the top level functional blocks and interfaces 25

Figure 6.1: Orchestration as mediator between Service Graph requests and Infrastructure

Resource availability 36

Figure 6.2: Mapping the Network Function -Forwarding Graph to infrastructure 38

Figure 6.3: Sequence diagram: Service Graph resolution 39

Figure 6.4: Service Graph example of a parental control service 40

Figure 6.5: Sequence diagram: service confirmation 43

Figure 6.6: Bottom -up information flow at Ca -Co reference point 46

Figure 6.7: Bottom -up information flow at Ca -Ro reference point 47

Figure 6.8: Bottom -up info rmation flow at Sl -Ro reference point 49

Figure 6.9: Top-down information flow at U -Sl reference point 51

Figure 6.10: Top-down information flow at Sl -Or reference point 53

Figure 6.11: Top-down information flow at Or -Ca reference point 54

Figure 6.12: Top-down information flow at Ca -Co reference point 55

Figure 6.13: Network Function - Forwarding Graph (NF-FG) model 59

Figure 6.14: NF description model in NF-IB 66

Figure 6.15: Service Graph Abstraction module 68

Figure 6.16: Interactions between different databases in different layers 70

Figure 6.17: Processes to add new NF to the NF-IB 71

Figure 6.18: Resource estimation framework 72

Figure 6.19: Model based service decomposition example 76

Figure 6.20: CtrlApp based decomposition example, sequence and messages 80

Figure 6.21: CtrlApp based decomposition example, NF-FGs 81

Figure 6.22: CtrlApp based decomposition example, final theoretical decomposed NF -FG 82

Figure 6.23: High level view of the orchestration process. 85

Figure 6.24: Various modes of abstracting the topology to higher layers. Blue õEõs represent

external nodes whereas yellow circles are representations of no des in the Orchestrator

topology. 88

Figure 6.25: Distributed Orchestrators with a shared topology. 90

Figure 6.26: Hierarchical Orchestrators. 91

ix D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 6.27: Initial setup before any scaling events. 95

Figure 6.28: Scaling by resizing existing resources (left). Scaling by migrating to a new

VM/container (right). 95

Figure 6.29: Scale-out example for Layer 1 -4 traffic (left). Scale -out example for Layer 4 -7

traffic (right). 97

Figure 6.30: Scale-in of a Layer 1-4 VNF (left). Scale-in of a Layer 4-7 VNF (right). 98

Figure 6.31: OpenNF architecture, taken from [Gember -Jacobson2014] 99

Figure 6.32: Simplified view of the UNIFY architecture with focus on dynamic processes

affecting the Resource orchestration. The red circles highlight the interfaces which

interact with the Resource Orchestrator. 101

Figure 6.33: An overview of the mapping of MF and OPs on UNs. 106

Figure 6.34: Example mapping of the link monitoring MF in the Infrastructure Layer 107

Figure 6.35: Initi al service without monitoring 108

Figure 6.36: SG / NF-FG Extended with Delay Monitoring functions inserted as VNFs 109

Figure 6.37: Two implementations of a MEASURE description 111

Figure 6.38: Multi -domain abstraction variations 122

Figure 7.1: Current working UN architecture 124

Figure 7.2: UN architecture in relation to reference points 127

Figure 7.3: Service Graph, NF-FG graph and traffic steering 127

Figure 8.1: Service Graph and Network Function Forwarding Graph decomposition 131

Figure 8.2: Information models and process for Video Content Service 139

Figure 9.1: NETCONF protocol layers 150

Figure 9.2: ONFs SDN architecture including OpenFlow and OF-Config 160

Figure 9.3: OVS architecture 160

Figure 9.4: OVS main configuration tables 161

Figure 9.5: Detailed OVS schema with table relations 161

Figure 9.6: Workflow of using HILTI from [Sommer2012] 163

Figure 9.7: ForCES provides a modular framework for structuring a network element (NE)

into forwarding elements (FEs) and control elements (CE) 164

Figure 9.8: SDN control platform overview from [Al -Somaidai2014] 165

Figure 9.9: Architecture and design elements of SDN controllers from [Kreutz2014] 166

Figure 9.10: Network Programming language overview from [Kreutz2014] 168

Figure 9.11: The Akamai Query System 170

Figure 9.12: Simple Management API architecture 171

Figure 9.13: I2RS problem space and interaction with relevant routing system functions. 174

Figure 9.14: Generic functional ABNO architecture 175

x D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 9.15: OpenStack 177

Figure 9.16: OpenStack components 179

Figure 9.17: Internals of Nova, steps to launch a VM. 182

Figure 9.18: ETSI MANO descriptor files 185

Figure 9.19: Network embedding concept 187

Figure 9.20: ISP Network Point of Presence with integrated NFV infrastructure 192

Figure 9.21: Service Chain example with redundant path 193

xi D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

List of tables

Table 6.1: Top-level elements of NF -FG model 60

Table 6.1: Elements of endpoints 60

Table 6.1: Elements of NFs 61

Table 6.1: Elements of deployed NFS of the NF-FG 62

Table 6.1: Elements of Network Elements 64

Table 6.2: Network Function s 67

Table 6.3: VNF taxonomy, properties of a VNF implementation 93

Table 6.4: Types of dynamic events, expected frequency and reaction times. 102

Table 7.1: UN Resource Management primitives. 125

Table 7.2: UN NF-FG Management primitives. 125

Table 7.3: UN VNF Template and Images primitives. 126

Table 9.1: Functionalities available in different OpenFlow versions 157

Table 9.2: Flow Matching Fields in d ifferent OpenFlow versions 158

Table 9.3: Statistics Fields in different versions of OpenFlow 158

12 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Summary

This deliverable documents the service programmability framework for the UNIFY

architecture. This framework will detail relevant process flows, interfaces, information

models and orchestration functionality in supp ort of service programming in UNIFY. In

order to make sure that the characterization of the programmability framework does not

occur in isolation of existing work in the research, open source initiatives or

standardization, an extensive related work overvi ew and corresponding gap analysis has

been made (Annex 2 and Section 5). In addition, this work has been performed in

continuous (re-)alignment with the UNIFY architecture defined by WP2, the monitoring

processes defined by WP4, and the universal node design defined by WP5. Annex 1 of this

deliverable lists the WP3 objectives. These are referred to as OBJ-x in this summary in

order clarify the relationship of the performed work to the goals of work package 3.

Network service programmability is related to many aspects problem spaces. A first

dimension of programmability relates to the definition and decomposition of different

components and traffic flows in order to compose a network service (referring to the

concept of a Service Graph), and the mapping of these components to physical resources

(Orchestration challenges). Another dimension is concerned about the programming and

configuration of these components itself. More complexity is involved when services need

to be programmed for tackling dynamic events, involving monitoring metrics and

appropriate reactions such as scaling in or out. At last, all of these dimensions need to be

aligned such that they can be triggered in an automated way initiated by clients (referring

to SDN-control). In the proposed framework we progressively tackle these challenges in the

following parts .

The first part of the programmability framework is about the characterization of the

interfaces , their requirements and the identification of re-usable technologies

corresponding to the defined reference points between different layers: 1) User and

Service Layer, 2) Service-Resource Orchestration, 3) Resource-Orchestration -Controller

Adaptation , 4) Control Function-Resource Orchestration and 5) Controller Adaptation -

Infrastructure. The most significant gaps with respect to the requirements for these

interfa ces (Section 4) and existing work (Annex 2) are identified on the interfaces 2, 3 and

4. For this reason, programmability in UNIFY focuses on these interfaces. Two information

models are crucial in this context: the Service Graph (Section 6.3) and the Network -

Function Forwarding Graph (NF-FG, Section 6.4). The Service Graph refers to the s ervice

request made by the user to the Service Layer, while the role of the NF -FG is two-fold: i) it

acts as the main information model to describe the service request in sufficient detail to

enable resource orchestration, and ii) it enables resource Orche strators to interact with

each other in a recursive manner by delegating NF -FG requests (top-down) to the

responsibility of other resource Orchestrators (e.g., to the local Orchestrator of a UN, but

13 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

also to the Orchestrator of other domains). The interfac e to the Universal Node has been

investigated in more detail in WP5 and summarized in this document (Section 7).

A second component of the programmability framework is about the high -level provisioning

process flow and the involved information models which are exchanged across d ifferent

reference points (OBJ-3). The provisioning process is characterized around two flows (see

Section 6.1): i) a top -down Service Invocation Flow, and ii) a bottom -up Service

Confirmation Flow. The first is initiated by a service request by the user which initiates a

cascade of interactions between components at different layers down to the physical

infrastructure . The second flow reflects the way in which infrastructure resource

information as well as instantiated Service- and Network Function information is

propagated from the Infrastructure Layer via the Orchestration Layer towards the Service

Layer.

Because of the important and particular role of the NF -FG in the UNIFY architecture, an

initial formal information model is defined for the NF-FG within WP3 (OBJ-6). The core

primitives of this model (Section 6.4) are endpoints, Network Function s, network elements

and monitoring parameters. While the first two primitives are rathe r self -explanatory in

this context, the introduction of network elements enable a range of abstraction

possibilities enabling network abstraction with different degrees of transparency (e.g. Big

Switch abstraction). We build further on the ETSI MANO VNF-FG characterization for the

Service Graph model. The characterization of monitoring functionality as well as required

reaction in response to events might be programmed within th e NF-FG itself using

constructs from the MEASURE language documented in Section 6.7.4.5 .

The role of service decomposition is important to enable multi -stage service programming

(Section 6.6). In many cases, a user is less concerned about particular implementations of

desired service functionality. For example an Intrusion Detection Service (IDS) can be

implemented in different ways using more or fewer Network Function s of different kinds. A

service decomposition framework enable s decomposition at the appropriate stages of the

orchestration process. We consider white -box decompositions guided by exposed rules

(e.g., an IDS might be decomposed using a Firewall and a Deep Packet Inspection

component, a Firewall might be implemented by an Open vSwitch FW, etc.). These rules

might be given by the Service Layer and stored in a Network Function Information Base

(NF-IB). A second type of decomposition might be steered by particular control Network

Functions. The latter enable dynamic decomposition according to application -specific logic

(e.g., dynamic decomposition into multiple NFs based on an internal learning algorithm).

A crucial part in service programming is centred on the role of orchestration functionality

(Section 6.7). The main goal of resource orchestration is to map the components of NF -FGs

on infrastructure resources. This process is referred as (virtual network) embedding.

Several existing approaches for optimizing this process and remaining challenges have

identified and documented in this document (OBJ -1, OBJ-2 and OBJ-4). When combining

14 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

the infrastructure resources of both cloud and network providers, orchestration processes

must scale to support tens of thousands of elements , with dynamic changes that in some

cases put strict timing requirements on the embedding, scaling, and failure handlin g

systems. In complement to the possibility of recursively stacking Orchestration Layers as

enabled by the defined architecture, abstraction and decomposition mechanisms, in

combination to the multi -domain considerations are described in the context of th is

document to reach this goal (OBJ-5). In order to support scalability at the service or

Network Function level, an initial set of scale-in and ðout mechanisms are documented.

The latter is closely related to interaction with monitoring functionality at different layers

in the architecture, as for example, detected performance degradation might trigger these

scaling processes. A range of required functionalities in the context of these dynamic

processes have been identified and listed.

Several concepts and processes of the proposed programmability framework can be

brought together in the application of concrete use cases (Section 8). For this purpose,

scaling in and out of an elastic router has been taken as example . In addition, a more

advanced use case focusing on video content services has been investigated. These act as a

starting point for initial integrated prototyping work and components based on the already

available prototyp ing efforts.

Future work in WP3 service programming will focus on further formalizing develop ed

information models and corresponding interface protocols, as well as fine -tuning the

required components for dynamic orchestration.

15 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

1 Introduction

The UNIFY project targets flexible service creation , provisioning, and programmability in

heterogeneous network environments from home to enterprise networks, through

aggregation and core networks to data centres. One of the crucial enablers to support this

process is the definition of open interfaces (application programming interfaces - APIõs)

between all pos sible layers of the control and data plane architecture and their interacting

users. Open APIõs enable programmatic control of available functionality in a range of

components.

Flexible service definition and creation start by formalizing the definition a service into

the concept of a Service Graph (SG) and subsequently a Network-Function Forwarding

Graph (NF-FG) as described in D2.1. These graphs represent the way in which customer end

points are interconnected to desired Network Function alities such as firewalling, load

balancing, and other functionalities represented in the use cases documented in the above

mentioned document . Service Graph representations form the input for the UNIFY control

and orchestration framework which is responsi ble for mapping these service requirements

to specific physical resources in the network. Open data plane interfaces enable the

effective provisioning of these mappings in the physical devices.

Figure 1.1: Core parts of the programmability framework

The goal of this document is to design a coherent set of processes, mechanisms, interfaces

and information models serving as a programmability framework for network services. The

architectural basis for this fram ework is the result from WP2 which consists of a Service

Layer, an Orchestration Layer and an Infrastructure Layer . Rather than explicitly including

Programmability
Framework

Processes

ÅBottom-up

ÅTop-down

Information
Flows/Models

ÅService Graph

ÅNF-FG

Decomposition

ÅNFIB-based

ÅCtrlApp-based

Orchestration

ÅDynamics

ÅMonitoring

Abstract
Interfaces

ÅSl-Or

ÅOr-Ca

ÅCa-Co

Use Case
Applications

ÅElastic Router

ÅVideo Content

16 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

a terminology section in this document, we refer to the Annex A of D2.2 which includes a

full overview of t erminology used in the UNIFY project.

Section 2 introduces abbreviations and definitions which are not yet introduced in D2.1 or

D2.2. Next, in Section 3, a brief architecture view is given, recapitulating the reference

points resulting from this layered architecture which are important with respect to service

programming, as well as the relevant actors for service programming .

In Section 4, the programmability requirements are fine -tuned in relation to the reference

points in order have a clear understanding on what is required from the framework.

Section 5 identifies the gaps in the fulfilment of these requirements with respect to

applicable existing technologies and protocols documented in Annex 2.

The core of the proposed framework is documented in Section 6. The latter contains

subsections on the core programmability aspects:

ɻ Programmability process flows with a focus on provisioning

ɻ Overview of p rogrammability Information Models (and flows)

ɻ Specification of the Service Graph model

ɻ Specification of the Network Function -Forwarding Graph

ɻ Structure of the Network Function -Information Base

ɻ Characterization of the service decomposition framework

ɻ Detailing orchestration processes related to programmability

ɻ Refinement of abstract interface definitions

ɻ Overview of multi -domain considerations.

Section 7 zooms in on the interface with the Universal Node in relation to the work of WP5 .

Two use cases are selected: an Elastic Network Function and a Video Content Service in

order to apply the proposed models and mechanisms. Finally, Section 8 will conclude the

document with lessons learned and direction s for future work.

17 D3.1 Programmability fra mework14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

2 Abbreviations and definitions

2.1 Abbreviations

Abbreviation Meaning

API Application Programming Interface

BGP Border Gateway Protocol

BFD Bidirectional Forwarding Detection

BSS/OSS Business Support System/Operations Support System

CLI Command Line Interface

CNF Compound Network Function

DPI Deep Packet Inspection

ENF Elemental Network Function

FIB Forwarding Information Base

KPI Key Performance Indicator

KQI Key Quality Indicator

MPLS Multiprotocol Label Switching

MIB Management Information Base

NBI NorthBound Interface

NF Network Function

NF-FG Network Function Forwarding Graph

NSC Network Service Chaining

ODL OpenDayLight

OP Observation Point

OTT Over The Top

OVS-DB Open vSwitch Database Management Protocol

PBB Provider Backbone Bridge

PBB-UCA Provider Backbone Bridge - Use Customer Address

QoS Quality of Service

RIB Routing Information Base

SA Service Availability

SG Service Graph

SAP Service Access Point

SBI Southbound Interface

SG Service Graph

SLA Service Level Agreement

SLS Service Level Specification

SW SoftWare

TCAM Ternary Content -Addressable Memory

UN Universal Node

VM Virtual Machine

VNF Virtual Network Function

18 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

2.2 Definitions

For definitions not included in this document, we refer to Section 2.2 of D2.2. Here we

focus on the additional concepts specific to the programmability framework.

Control Application or CtrlApp (also VNF CP or Control NF) is a Network Function which

has the ability to interact directly with the resource orchestration (through the Cf -Or

interface) , enabling instantiated services to dynamically change the NF-FG request with

respect to NFs, their interconnection or required resources , through a programmatic

interface .

Service decomposition is the process of transf orming a NF-FG containing abstract NF(s) to

NF-FG(s) containing less abstract, more implementation -close NF(s). This can also include

dividing the functionality of a complex NF to more, less complex NFs. In UNIFY, we have a

generic concept of UNIFY(ed) service decomposition, and two realization options, the NF-

IB-based (aka white-box) and the CtrlApp based (aka black -box) decomposition as

described in Section 6.6.

19 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

3 Architecture overview

The design of the UNIFY architecture is described in three incremental steps in

deliverables of WP2. The first (i.e., overarching architecture) and the second (i.e.,

functional architecture) design steps are documented in Deliverable 2.1 (D2.1) and the

third design step (i.e., system architecture) is currently in progress and will be

documented in Deliverable 2.2 (D2.2).

The overarching architecture defines the high level design principles such as layers (i.e.,

Service Layer, Orchestration Layer , and Infrastructure Layer) and main interfaces between

the layers (i.e., U-Sl, Sl-Or, Or-Ca, Ca-Co, Co-Rm, and Cf-Or) as described in deliverable

D2.1. The functional architecture illustrates subspecialized elements of the layers and

specifies the interaction between the elements within one layer or across different layers.

With regard to designing the architecture, WP4 contributes to the UNIFY framework by

identifying the narrow -waist that meets following principles:

ɻ The narrow-waist harmonizes and unifies all the operations performed below it

ɻ The narrow-waist offers a generic resource provisioning service

ɻ The narrow-waist component must work on abstra ct resources and capabilities

types, virtual resources corresponding to network, compute and storage virtualization

ɻ The narrow-waist component must not understand any higher layer logic, function,

configuration, etc.

Figure 3.1 depicts a three layered model that the UNIFY framework follows. The narrow -

waist is shown at the resource orchestration point in the figure. Note that the architecture

represents a user plane that is shown separately from the service provider in the figure,

thus it is not considered part of the three layered model.

The Service Layer is connected to the application layer through its northbound interface

and communicating with users, e.g., end user, retail provider, OTT provider, content

provider, and a service provider. The service request from the user turns into consumable

services on this layer by defining and managing service logics and by establishing

programmability interface to users. The ser vice is described by a chain of high -level

Network Function s and pre-defined parameters which is generally referred to as a Service

Graph (a.k.a., Network Service Chaining) all through the UNIFY framework. The Service

Layer also interacts with the Orchestration Layer via its southbound interface and provides

further detailed description of the service chain as a form of Network Function Forwarding

Graph (NF-FG).

20 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 3.1: The three layered UNIFY architecture

The Orchestration Layer maintains a global view of the network and bridges between the

Service Layer and the Infrastructure Layer , thus it is the core of the UNIFY system. The

Orchestration Layer is designed to provide a unified representation of all underlying

resources and capabilities. For this, the Orchestration Layer receives a logical chain of the

service (in an NF-FG form) from the Service Layer via its northbound interface and maps

physical/virtual resources into the logical service chai n. The architecture also considers a n

eastbound interface (Cf-Or depicted in Figure 3.1) for receiving updates fr om the deployed

Service itself interfacing with the Resource Orchestrator through a CtrlApp or Virtual

Network Function Control Plane component. Based on this mapping, the Orchestration

Layer reserves and configures resources and management functions (e.g., monitoring and

troubleshooting) through its southbound interface towards the Infrastructure Layer .

Moreover, the Orchestration Layer receives and analyses the status information of

resources that is notified by the Infrastructure Layer and forwards it to the Service Layer.

Finally, the Infrastructure Layer encompasses all networking, compute and storage

resources. By exploiting suitable virtualization technologies this layer supports the creation

of virtual instances (networking, compute and storage) out of the physical resources. To

put it concretely, Universal Nodes (see D5.2 for detail), Data Centres, SDN nodes (e.g.,

OpenFlow switches), and legacy appliances are primarily considered as physical resources.

21 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Each of these physical resources has a differen t northbound interface (NBI) and capabilities

(e.g., level of programmability). Therefore, the Orchestration Layer must be able to

interact with each of this NBI exposed by these resources . For this reason, the

Orchestration Layer is further divided into t hree sub-layers and the Control Adaptation (CA)

and multiple controllers are mainly responsible for communicating with various types of

physical resources.

3.1 Actors relevant to programmability

Considering the recent development hypes around Software Defined Networking

[Chua2013], it is inevitable to consider and possibly build on already existing software

components. Such component based design would also allow modular and independent

development of functionalities if interfaces are cleverly defined.

If we t ake a look at the development landscape, we can identify different actors who

contribute with different components to create a virtualization and orchestration

framework up to the users. Below, we identify a few key actors and describe their

relations to c reating a value chain .

In the simplest case for any business relationships we have to identify users and service

providers. Users consume communication and cloud services. Users can be residential or

enterprise end users, other service providers (multi do main setup), over the top (OTT)

providers, content providers, etc. Users sign a contract with the service provider for

specific services with service level agreements (SLA). Service providers provision, operates

and finally bill services to their users [TM F,ETOM]. In the SDN and Cloud era service

providers would like to reduce both their operational and capacity e xpenses through

virtualization .

Softwarization of the infrastructure involves creating global resource views and

orchestrating those resources. I nfrastructure vendors (e.g., of universal node, data

centres, etc.) will continue to create the hardware elements providing optimized

execution environment for virtualized Network Function s. Controller software managing

both the data centre and the physica l networking resources are developed mostly in open

sources communities (e.g., OpenDaylight 1, ONOS2). Orchestration functionality, on the

other hand, is an added value on the top of the generic controller functionality, hence will

become the differential platform services offered to the service providers to run their

networks.

1 http://www.opendaylight.org/
2 http://onlab.us/tools.html

22 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 3.2: Business actors in Service Programming

¶ User: Users consume communication and cloud services. Users can be residential or

enterprise end users, other service providers (multi domain setup), over the top (OTT)

providers, content providers, etc. End/Enterprise Users (also referred as client) interface

with the U -Sl interface, while retail/OTT providers directly consume the UNIFY Resource

Service (see D2.2). Users sign contract s with the service provider for specific services with

service level agreements (SLA).

¶ Service Provider: Service providers offer services to users subject to specific SLAs.

Service providers make direct use of logical resource management (from Orchestration SW

Providers) and DP & Virtualization Management (from Controller SW Providers). Service

providers access the resources via a resource manager functionality of an Infrastructure

provider.

¶ Orchestration SW Provider: Software developers (e.g., vendors, 3rd party) who

create software functions (services, libraries and apps) to manage the global view of

abstract resources.

¶ Controller SW provider: Software developers (e.g., open source communities,

vendors or 3rd parties) developing data plane managers (e.g., OpenFlow) and cloud

23 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

managers (e.g., OpenStack) to present abstraction of the underlying resources (networking

and cloud).

¶ Infrast ructure Vendor: Providers of physical resources including both networking

and virtualization environments.

¶ NF Developers: internal to the service provider or third party developers who

designs, develops and/or maintains Network Function s. The orchestration framework shall

support the development cycle through service provider DevOps (see WP4).

24 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

4 Programmability requirements

The programmability requirements are largely driven by the interfaces corresponding to

the defined reference points (see previous sectio n). An initial definition of these abstract

interfaces has been defined in D2.1 Section 7.2. The resulting functionality is depicted in

Figure 4.1. Section 4 of the s ame document reports a full list of requirements relative to

UNIFY. Subsection 4.2 focuses on the programmability and orchestration aspects and

corresponding requirements in general (in direct relationship to the ETSI NFV

requirements). Meanwhile the func tional architecture has reached a mature state

(documented in D2.2) which requires minor reconsideration from programmability aspects

as well. A refined and more detailed version of the top -level functional model supporting

recursive orchestration is shown in Figure 4.2.

Figure 4.1: Initial interface description driving programmability requirements

A more detailed version of the top -level functional model supporting recursive

orchestration is shown in Figure 4.2.

25 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 4.2: A more detailed view on the top level functional blocks and interfaces

4.1 U-Sl/Sl-Or interface

A service request (involving a Service Graph) from the Application Layer towards the

Service Layer, has the following programmability requirements:

1. MUST include which SAPs are involved, and which NFs (both virtual and physical NFs

MUST be supported) are required in the service (given that these NFs are listed in the NF

catalogue)

2. MUST include a specification of connectivity types and connectivity levels i n

between NFs and/or SAPs. This SHOULD support flow space definitions.

26 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

3. SHOULD be able to provide SLA parameters on traffic requirements and its scope

4. SHOULD support the attachment of performance indicators or Key Quality

Indicators3 to NFs, the connectivi ty between NFs or on combinations of both

5. SHOULD support constraining the mapping of service components to the physical

infrastructure (including pinning down NFs to particular resources)

6. SHOULD be able to specify resiliency required of NFs, connectivity between NFs or

combinations of both

7. MAY support the characterization of optimization triggers related to the mapping of

service components to the physical infrastructure (e.g., related to traffic characteristics)

8. SHOULD be able to specify scaling requirements of service components

9. SHOULD specify restrictions on what traffic is allowed in the Service Graph

10. SHOULD be able to specify service-specific policies defined by users

11. MAY specify how billing should be performed

The reconfiguration of a service MUST support the addition or removal of NFs, links or

SAPs, and the modification of any of the characteristics mentioned in the above

requirements.

4.2 SI-Or interface

The Sl-Or interface can be considered as a an enriched U-Sl interface, where the SG is

enriched towards a Network Function -Forwarding Graph. The requirements listed for the

SG, also apply on the NF-FG description. For NFs part of the NF -FG, the following

requirements apply:

1. The NF description MUST include resource requirements in terms of computation,

storage and memory requirements in order to enable mapping to infrastructure

2. Key Performance Indicators (KPI) related to ENFs or interconnected groups of NFs

MUST be measurable

4.3 Cf-Or interface

The following functionality is required from a Resource Control Function within a Deployed

Service and the resource Orchestration Layer . These are similar to the ones on the Sl -Or

interface:

1. When programming the VNF as a component of the Service Graph its description

MUST be able to contain compute and store r esource demands.

2. SHOULD be able to create and upgrade or remove NF images in an operational

environment

3 This may involve requirements related to resiliency, QoS, etc.

27 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

3. SHOULD be able to modify (add/remove) links between NFs

4. SHOULD be able to change the NF description-related requirements:

5. SHOULD be able to modify the link requirements

ɻ SHOULD enable scaling of NFs (e.g. resize NF resources)

4.4 Or-Ca interface

Requirements on the Resource Orchestration - Controller Adaptation (Or -Co) interface:

1. MUST support the Sl-Or interface requirements, as described there.

2. MUST support the resource mapped NF-FG description

3. MUST not be specific to any controller

4. SHOULD support the merged NF-FG view (because it will be scoped to

domains/controllers by the CA)

5. In case of the Orchestrator and the Controller Adaptation are not separated, this

interface MAY not exist or MAY be internal/proprietary in the given implementation

4.5 Ca-Co interface

Requirements on the Controller Adaptation ð Controller (Ca-Co) interface:

1. MUST support a subset of the north bound interface (NBI) of the controller

2. SHOULD support at least the minimal subset needed to initiate a NF and

interconnect the initiated NF with the domain boundary (if applicable)

3. MUST NOT contain information which is not related to the domain/controller scope

(except reference to domain edges to ot her domains)

4. SHOULD be specific to the given Controller, i.e.

5. In case of networking, it MUST be able to describe the connectivity between the

NFs

6. In case of computations, it MUST be able to manage NFs (including initiating,

configuring, é)

7. MAY be skipped, in case of a domain which is able to directly receive NF -FGs.

4.6 Co-Rm interface

In addition, the following base functionality is expected to be initiated by Controller(s) in

the Orchestration Layer towards the Infrastructure Layer :

1. MUST support at least one north -bound interface of network switching equipment in

order to start/stop, configure, model and discover switching functionality

28 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

2. MUST support at least one north-bound interface of a server platform in order to

start/stop, configure, model and discover NF and server functionality

29 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

5 Programmability gap analysis

Legend:
X = intended applicability
[x] = potential applicability, although not intentional

U
-S

l/S
I-
O

r

C
f-O

r

O
r-

C
a

C
a-

C
o

C
o-

R
m

Multi-scope configuration and modelling frameworks

SNMP

x

NETCONF/YANG [x] [x]

x

(Web) Interface Description Languages [x] [x]
 Semantic (Web) Modelling frameworks [x] [x]
 Infrastructure modelling frameworks

 Common Information Model [x]

x

Directory-Enabled Networking(-NGRG)

x

RSpec

x

Network Description Language x

Network Markup Language x

Infrastructure and Networking Description Language

x

Network Programming and Control
 Node-level programming and Control
 OpenFlow

x

OVSDB

x

OF-Config x

Click Modular Router x
 HILTI x
 ForCES

x

Network-level Programming and Control
 SDN Controller (incl. ODL)

[x] X
 Network Programming Language Overview [x] [x] [x] x
 Frenetic/Pyretic [x] x

Akamai Query System [x]

Simple Management API x x

NM-WG schema x x x

I2RS

x
 ABNO x

x

 Cloud Programming and Control
 Cloud-level Programming and Control
 OpenStack

x
 Cloud Controller Overview

x x

 Service-level Programming and Control
 ScaleDL x

 ETSI MANO VNF Graph model x

30 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

In this section, we analyze the technologies reported in Annex 2 and investigate how they

can be applied in order to meet UNIFY requirements.

Orchestration and control functionality in the UNIFY architecture might be accessed as a

(northbound) web interfa ce. As REST provides good performance and scalability, it is the

RPC paradigm to be used in most of the cases (Web services). Its simplicity and capability

of using different data formats compared to SOAP protocol (using only XML) make it a

potential inter face paradigm to any orchestration and/or control software layer in the

UNIFY architecture, thus of potential value for Sl -Or, Cf-Or and Or-Ca (the latter in both

directions).

5.1 U-Sl interface

The closest match of the Service Graph information model and corr esponding interface as

defined in the UNIFY architecture in D2.1 is the Network Service (NS) model defined by

ETSI MANO. The latter already defines the concepts of NFs, their links and the resulting

graph. While this is ongoing work, UNIFY might base the SG model on ETSI, and extend it in

order to support the notion of NF and service scalability.

For service scalability, UNIFY might rely on the work performed by the CloudScale project.

ScaleDL is a language defined by the project particularly expressing sc aling properties of

NFs and the service.

Wherease the above proposals mainly focus on the syntactic/interface properties of

services, it might be useful to consider the additional value of adding semantics to the

description of NFs and services. The latter might inherit from the work done in research on

ontologies and the semantic web (services). While traditional web services have a different

goal compared to the services UNIFY intends to deliver 4, there might be several

characteristics which might be re -used. Frameworks such as BPEL (its extensions) and

OWL-S enable the definition of composite web services. These syntactic and semantic

frameworks have interesting properties in order to characterize composite UNIFY service in

the form of Service Graphs. Capability of QoS parameters specification and fault handling

are other features of BPEL which are useful for service description in UNIFY.

In order to consolidate information of lower layers towards the user, UNIFY might r ely on

SMI. The Simple Management Interface (SMI) provides a simple and common management

interface for multiple services deployed in cloud or other platforms. SMI can be used both

with SOAP and REST interface. An operation òGet ManagementReportó is defined to return

information about service instance health, failure and metrics. It could be used to query

monitoring metrics or subscribe the metrics report and alarm. However, it doesnõt provide

capabilities to describe monitoring functions or metrics to be a ssociated with the Network

Functions in service/network graph. It may be applied into U-Sl and SI-Or interfaces but

must be extended and adapted in order to be used in UNIFY.

4 UNIFY intends to offer services which provide functionality at lower layers than at the http -layer,
involving for example raw packet processing elements.

31 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

The specification of a Service Graph not only describes the interconnection of NF s, but also

assumes that the NFs themselves can be characterized in an accurate manner. NFs might

be programmed using barebone system calls on top of, for example a *NIX -based OS, but

ideally higher level libraries or frameworks are available. In addition to the frameworks

which are investigated in WP5 (e.g., DPDK framework 5), we identified Click Modular Router

and HILTI as potential frameworks of value in this space. Click modular router is a

potential candidate for implementing Network Function s (NF) indicated in the NF-FG. The

modular structure in Click enables implementation of atomic Network Function s and more

advanced Network Function s can be defined as Click scripts (combination of Click

elements/atomic Network Function s). The HILTI toolkit might be u sed to compose NFs

which focus on traffic analysis and inspection.

5.2 Sl-Or interface

Several of the technologies discussed in the previous section (a.o., ETSI MANO VNNF

model), might be re -used and extended for the Sl -Or interface. In this context, the NF -FG

model should be able to characterize the interconnection of NFs in a closer relation to the

available infrastructure and to the end points via fixed and logical links respectively ,

supporting recursively splitting the graph into multiple domains (see D2.1 Section 6.3).

The NM_WG XML schemas introduced by OGF (Open Grid Forum) define a neutral

representation for network measurements and can be extended to support new types of

data. It could be a candidate format used to describe the monitoring functions and the

measurement metrics. However, i t must be extended to support the concept of NF -FG

defined in UNIFY and provide more generic abstract for various monitoring functions. In

addition, as no all interfaces will use XML based format, the conversion with other format

is to be considered.

5.3 Cf-Or interface

The Cf-Or interface has many similarities to the Sl -Or interface, but has a more restricted

scope. The technologies discussed in the above section(s) might therefore be re -considered

and potentially constrained.

5.4 Or-Ca interface

Network Programmi ng languages are not directly considered in UNIFY. However, we can

benefit from them in defining service programming approaches. That is, some of languages

can be extended and applied in specification of the UNIFY architecture interfaces. The

advantage of many of these languages is that they offer high -abstraction level primitives

for controlling networks. These concepts might be re -used for the abstract interface

between the resource orchestration component and the controller adap tation component.

Specifically, the following four languages are relevant for the Or -Ca interface.

5 Intel Data Plane Development Kit: http://dpdk.org/

32 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Frenetic/Pyretic provides high level abstractions to query and perform other network

management tasks. It also lacks the capabilities to describe monitoring functions or

metrics to be monitored.

NetCore operates with network policies described at a high abstraction level. This

approach could be useful for describing traffic steering at a higher abstraction level.

However, the major drawback of NetCore is that it is not network -wide language and the

user must specify which network element implements given policies.

NetKAT uses regular expressions on network policies to describe the network behaviour.

These regular expressions could be extended to involve NFs as well. Regular expressions

could be a natural way to describe service chains or Service Graphs, therefore NetKAT or

some components of that might be useful.

Merlin is able to automatically partitioning network policies expressed by a declarative

language, and allocating resources. I t could be applied for service chain/ Service Graph

description. Furthermore, we can borrow ideas for decomposition and resource mapping

tasks as well. However, here is that the source code of Merlin is not yet available yet.

5.5 Ca-Co interface

Although the UNIFY framework intends to be compatible be with (potential extension to)

any controller framework, the following two frameworks are of particular interest because

of their very active development community and wide support of the industry.

OpenDaylight : The supported northbound interfaces to OpenDaylight include OSGi

framework and bidirectional REST. In particular, the REST interface enables remote

applications or higher layer controllers (e.g., Orchestrator) to describe the required

transport between the N Fs. Accordingly, the REST interface of the OpenDaylight can be the

basis for designing a UNIFY-specific interface between the controller adaptation layer and

the controllers (i.e., Ca -Co interface).

OpenStack : OpenStackõs NBI is the management and control interface for OpenStack

based cloud infrastructure. It is RESTful and based on JSON/HTTP. Each core project in

OpenStack will expose one or more HTTP/RESTful interface for interacting with higher

layer. OpenStack NBI claims to have good extensibility and discovery mechanisms.

Therefore the interface may be used to manage NF VMs in the datacentre domain, and may

be applied to other domain with extensions.

Due to the recursive nature of the UNIFY architecture, the NF-FG model might also be

used on this interface to interact with lower layer Orchestrator s. Because of the bi-

directional nature of this interface, infrastructure resource might also be exposed from

lower layers to higher layers using this model.

33 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

5.6 Co-Rm interface

WP3 in UNIFY does not focus on the Co-Rm interface, as many protocols a lready exist in

this space. Nevertheless, below a short overview is given on technologies which might be

re-used.

SNMP may be used for specifying the Co-Rm interface, however in this cas e all the

relevant MIB for the managed entities should be defined. This seems to be inflexible

compared to e.g. NETCONF.

DEN may be used to model the knowledge about the network users, applications, network

elements and their interactions. Using the inform ation model in DEN-ng, policies can also

be handled. This model is mainly used for management of devices and can be used to send

capabilities of the devices over Co -Rm interface to the Orchestration Layer . However, it

should be extended to support network virtualization technologies to be considered in this

interface.

OpenFlow is obviously a crucial protocol (cfr. programmability requirements) that can be

used in the communication between SDN Controllers and network resources (i.e.,

forwarding element). Spe cifically, the SDN controllers can utilize OpenFlow to program the

forwarding elements in a per flow basis. The OpenFlow protocol will play a central role in

realizing the Co-Rm interface of the UNIFY architecture, as it will enable dynamic traffic

steering between (virtual) Network Function s, and therefore allows the complete

realization of NF -FG.

NETCONF/Yang can be potentially used in Co -Rm interface to define NF -related operations

and abstract data structures viewed by the Controller layer (or higher s ub-layers of

Orchestrator?). Procedures, such as starting/stopping NFs, requesting parameters of

running NFs, notifications in case of failures or any other events can be defined by Yang

language and implemented via NETCONF transport. Additionally, abstrac t data structures

exposed toward upper layers can be given by Yang data models.

The general models such as NDL and NML focus mainly at generic network descriptions

which can be extended or incorporated in other models. The later models such as NDL-

OWL and INDL rely on these general models and also request -like models (e.g. VxDL) to

enable i) users to define their requests easily and ii) management software to match the

requests to available infrastructure. The semantic web nature of the general models

enables them to be easily embedded in other models. Using OWL a graph structure can be

generated which matches the infrastructures (a graph of connected resources). The other

advantage is that OWL provides a clear split between semantic and syntax and this enab les

mixing/stacking several ontologies. Therefore, NDL -OWL and INDL may be of interest for

the Co-Rm interface because unlike NDL and NML which are network-centric, they can

model all network, compute and storage infrastructures and users requests can be

modelled as well.

34 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

ForCES provides an extendible framework and protocol for (dynamic) composition of

various processing pipelines in the data plane. Specifically, ForCES provide interfaces and

methods for control and management of logical functional blocks (LFB) in the forwarding

plane, where the concept of LFB can be extended to Network Function s as considered in

the project. One of the main advantages of the FOrCES is that it is oblivious to the type of

processing (LFBs), i.e., not caring if the data plane processing is virtual or physical.

Accordingly, ForCES can potentially be used for instantiation, configuration and life -cycle

management of various (virtual) Network Function s, as well as dynamically interconnecting

them to provide complex Network Functio ns within the Infrastructure Layer .

The most relevant OVSDB functionalities for UNIFY could be:

ɻ The Network Configuration Service: The current default OVSDB Schema's support

the Layer2 Bridge Domain services as defined in the Networkconfig.bridgedomain

component.

ɻ Overlay Tunnel Management: Network Virtualization using OVS is achieved through

Overlay Tunnels. The actual Type of the Tunnel (GRE, VXLAN, STT) is of a different topic.

The differences between these Tunnel Types are mostly on the Encapsulation a nd

differences in the configuration. But can be treated uniformly for the sake of this

document. While Establishing a Tunnel using configuration service is a simple task of

sending OVSDB messages towards the ovsdb-server, the scaling issues that would aris e on

the state management at the data -plane (using OpenFlow) can get challenging. Also, this

module can assist in various optimizations in the presence of Gateways, and also helps in

providing Service guarantees for the VMs using these Overlays with the he lp of underlay

orchestration.

35 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

6 Programmability framework

Rigid network control limits the flexibility of service creation. Network and service

virtualization aims to enable rich and flexible services and operational efficiency.

Virtualization is controlled through Orchestrators (data centre and network), which offer

northbound interfaces (NBI) to various users. The possibility for innovation highly depends

on the capabilities and openness of these northbound interfaces. We believe that these

interfaces should introduce high level programmability besides policy and service

descriptions.

It is the vision of UNIFY that service function chaining will be used by the network

operators to offer services to their customers (residential, enterprise, content providers,

other operators, etc.). Both, operators and customers will like increased flexibility and

dynamism in the ir control. This may be achieved through allowing them to program

(directly or indirectly) the service chains.

ETSI in [ET2013a] ð among other things - defined their Network Orchestrator as interfaces

to the outside world to allow interaction with the orc hestration software. Even though

there may not be consensus in the splitting of functionality between orchestration and

controllers, we re -define these terms as we use them throughout this document.

Our goal with the introduction of UNIFYõs programmability framework is to enable on -

demand processing anywhere in the physically distributed network and clouds. Our

objective is to create a programmability framework for dynamic and fine granular service

(re-)provisioning, which can hide significant part of the r esource management complexity

from service providers and users, hence allowing them to focus on service and application

innovation similarly to other successful models like the IP narrow waist, Android or Apple

IOS. A programmability framework consists of the definition of processes, mechanisms,

interfaces and information models in order to support highly dynamic and flexible service

provisioning.

Before delving into the details of the framework, a short overview of the global mapping

process is given below. While most important concepts will be described in this context, a

more complete overview of recurring terminology in UNIFY can be found in Section 2 of

D2.2.

36 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 6.1: Orchestration as mediator betw een Service Graph requests and Infrastructure
Resource availability

Flexible service provisioning needs to reconcile two sides of a spectrum: on one side there

is the service definition , on the other side there is a heterogeneous landscape of

infrastructure on which services need to be deployed. The first reflects the Service Layer,

the latter is part of the Infrastructure Layer . In between, it is the goal of the Orchestration

Layer to bring both together (see Figure 6.1). The Orchestration Layer receives the service

information on its north -bound information from the Service Layer, and receives

infrastructure resource models from network and cloud controllers on its southbound

interface.

37 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Service provisioning starts with the user 6 defining a service request in the form of a Service

Graph (SG). An SG describes a service requested by a user and defines how (which Network

Functions) and where the service is provided (which Service Access Points); and how

successful delivery of the service is measured. Figure 6.1 depicts a simple SG consisting of

three NFs.

In order to enable mapping of the individual components of the SG to the infrastructure,

the Service Layer performs translation of NF descriptions into palatable resource

requirements, as well as translating NF interconnections into con crete forwarding

abstractions which can be mapped to network abstractions such as Big Switch with Big

Software (BiS-BiS) connectivity between NFs (see Figure 6.2). The BiS-BiS abstraction is

defined in D2.2, and refers to the virtualization of a Forwarding Element with a Compute

Node, enabling to instantiate and interconnect NFs.

The result of this ad aptation is the Network Function -Forwarding Graph (NF-FG), and is

forwarded to the Orchestration Layer . Based on the resource model obtained via

controllers interfacing with infrastructure, the resource orchestrator decomposes and

maps NFs to server infrastructure, and network forwarding abstractions to infrastructure

switching functionality. The mapping is the UNIFY Resource service provided by the

Orchestration Layer . In the particular example of Figure 6.2, the VNFs of the NF-FG on the

left upper side are deployed on two separate Universal Nodes (UNs), and the Big Switch

abstraction interconnecting them is decomposed into the combined switching functionality

of two OpenFlow switches and the virtual switching capabilities of UN1 and UN2. The

output of the orchestration is the mapping/embedding of instantiable Network Function s

to physical or virtual resource s defined as a Network Function -Forwarding Graph.

6 End-user, business user, retail provider, OTT Service Provider

38 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

Figure 6.2: Mapping the Network Function -Forwarding Graph to infrastructure

6.1 Programmability process flows

Note, that only the programmability process flow is described, other functionalities like

authentication, authorization, access control, charging, etc. will be defined later on.

Additionally, monitoring and management aspects are defined in the DevOps fram ework

and will be integrated into the overarching architecture. The programmability framework

is used to (re-)provision services. The (re -)provision triggers may come from the user, the

service management system, the resource management system or control p lane. Handlings

of these triggers are considered for further studies.

39 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

6.1.1 Service Invocation: top -down

Figure 6.3: Sequence diagram: Service Graph resolution

40 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

The service initiation process flow consists of the following steps, see Figure 6.3:

1. The User creates its Service Graph based on the available service components (or

catalogue) or service templates or simply picks one of the service (graph) offered by the

Service Provider. The Service Graph includes service functions (atomic or compound) as

components, their logical connectivity and corresponding service level specifications (SLS)

as part of the service level agreement (SLA).

Although Section 6.3 will describe in more detail the particular characteristics of a Service

Graph, we can consider the following example of a parental control service as working

assumption. It consists of 2 Service Access Points and three Network Function s: a firewall,

a web-cache and a NAT function. The NFs are interconnected via three links, splitting web -

traffic from other traffic between the firewall and the other NFs . As indicated on the

figure, every NF in a SG has a unique identifier (UUID), enabling to refer to a NF instance.

The latter can be shared between different SGs.

Figure 6.4: Service Graph example of a pare ntal control service

2. The service request is sent to the service adaptation as a Service Graph according

to the U -Sl reference point.

3. Upon receiving the Service Graph the service adaptation logic ð besides traditional

management functions like AAA, chargin g, etc. ð may expand the details of the Service

Graph definition using decomposition rules (see Section 6.5 and Section 6.6) and may

translate any service level specifications requirements (e.g., by defining key quality

indicators (KQI)) to compute, storage and networking requirements and measurable

indicators (e.g., key perf ormance indicators ð KPIs). The relation of KQIõs and required

monitoring and observation points is described into more detail in 6.7.4. In addition,

service adaption functionality might involve mapping (Service Layer-orchestration) to

virtualized resources as exposed by the underlying Orchestration Layer (i.e., by the

virtualizer component of the underlying layer) . The mapping can be as simple as mapping

the links of the SG to the ports of a virtualized Big Switch infrastructure component, but

can also become more complex in case exposed virtual infrastructure consists of multiple

components (see Section 6.2.1).

41 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

4. The NF-FG is sent to the Orchestrator according to the Sl -Or reference point (see

Section 2). All components of t he NF-FG are known in the SPõs

NF-IB.

5. The orchestration component bears with the global compute, storage and

networking resource view at the corresponding abstraction level (see also Section 6.3 of

D2.1). As detailed in Section 6.6, the Orchestrator can further decompose NFs according to

available rules and resources in the catalogue, and/or delegate orchestration to lower -

level domains/Orchestra tors. The (lowest -level) orchestration function breaks down the

Network Function s defined in the NF-FG until they are instantiable according to the given

service constraints (e.g., proximity, delay, bandwidth, etc.), available resources and

capabilities an d operational policies (e.g., target utilization). The output of the

orchestration is the mapping/embedding of instantiable 7 Network Function s to physical or

virtual 8 resources in the form of a resource -mapped Network Function -Forwarding Graph.

6. The mapped Network Function Forwarding Graph (with outstanding compute,

storage and networking requirements) is sent to the Controller Adaptation according to Or -

Ca reference point.

7. Upon receiving a NF-FG, the Controller Adaptation: i) can split the NF-FG into sub

NF forwarding graphs according to the capabilities of the different underlying controllers

and ii) translates the information according to the Controllersõ northbound interfaces. The

information format below the Controller Adaptation depends on the type of resource.

8. Controller Adaptation sends scoped requests to the underlying controllers according

to their resource types:

a) For compute/storage instantiation in data centres some compute Orchestrator must

be invoked, e.g., OpenStack to instantiate V Ms at a data centre or compute node (see 8a

in Figure 6.3).

b) For the forwarding overlay allocation in the network an SDN controller must be

contacted (e.g., OpenDayligh t).

c) For compute, storage and networking resources in the Universal Node, the UNõs

Controller must be contacted. Within the UN, we foresee a similar stack of orchestration

functions as in the overarching UNIFY domain, i.e., adaptation functions, orchestrat ion and

compute and networking resource managers. Therefore we foresee that the UN can receive

definitions and requirements according to a NF -FG, which is a sub-graph of the output of

the upper level orchestration.

7 Note: Instantiable has scoped meaning, i.e., one Orchestration Layer may believe that a NF is
directly instantiable at some of its resources; however, there may be additional
abstraction/virtualization layer(s) involved underneath.
8 Provided by the resource service provided by the underlying layer.

42 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

9. Different Controllers act as virtualizati on managers according to the underlying

technologies/virtualizations:

a) The Compute Infrastructure Manager receives the requested Network Function

Virtual Instances and CPU, storage constraints per node. Depending on the type of the

resource where the funct ion is to be launched, it will bootstrap an appropriate virtual

machine or reserve resources on an appliance.

b) The Network Controller will receive the desired network connectivity between the

Network Function instances. Based on the type of requested connec tivity, the capabilities

of the network equipment and the actual network state , it will decide on the realization.

c) The Universal Node will receive a NF-FG, and will do the internal resource

orchestration a nd allocation similar to point 4 -9.

10. The Infrastruc ture components will receive the requests from their associated

Controllers/Managers via the applicable protocols (e.g., OpenFlow, libvirt) and will start

providing the requested functionality.

43 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

6.1.2 Service Confirmation: bottom -up

Figure 6.5: Sequence diagram: service confirmation

44 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

References to particular instances in the Infrastructure Layer can be assigned in a top-

down manner. Once the Service Graph is instantiated at the Infrastructure Layer the

individual instantiation of components can be acknowledged and propagated back to the

Service Layer in order to allow operation and management tasks to be performed. This

bottom up notification process is show n in Figure 6.5.

1. The Controllers / virtualized infrastructure managers collect the resource

identifiers corresponding to the instantiated resources.

2. Controller Adaptation collects status and identifications to the allocated resources.

3. The Orchestration function collects resource allocation status of network

configuration and VMs.

4. The Orchestration logic notifies Service Adaptation about the resource allocation

regarding the NF-FG.

5. The Operation Support System (OSS) and / or Element Management System in the

Service Layer configure the service logic in the NFs. (Some of the configuration might be

done by the User)

6. The User is notified about the available services and service access points.

7. The Operation Support System (OSS) and / or Element Management System in the

Service Layer operate and manage the instantiated services according to the SLA. (Note:

management might be partially or fully done by the User .)

Note: While the requests to create a NF-FG and the associated status reports go through all

the layers (programmability flow) the actual configuration of the NF logic (e.g., filling in

the rules of a firewall) will go directly from the OSS/EMS to the various Network Function s.

6.2 Information model s according to the reference points

The information models form the essential information units transferred between different

reference points in the programmability process. As indicated in the introduction, the role

of the Orchestration Layer is to reconcile the bottom -up resource information flow driven

by the infrastructure with the top -down service information requests. Because of this

dependency, we start with the description of the bottom -up information flow before going

into the top -down inform ation flow. The report corresponding to Milestone M4.1 as well as

Section 6.7.4 provide further refine this process with respect to the monitoring process.

6.2.1 Bottom -up information flow

Information concerning networking, compute, storage resources or particular capabilities

flow s from the Infrastructure Layer up to the Service Layer on various timescales and

different level of detail. Networking resources refer to available interfaces, bandwidth,

delay characteristics, compute resources are for example CPU characteristics, RAM

memory, and storage refers to available disk space. The possibility for infrastructure

45 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

elements to expose parti cular capabilities enables to expose specific execution

environments (e.g., hardware -optimized implementations), particular Network Function s

(e.g., firewall of type x).

Basic resource information, e.g., the existence of a switch or link, is seldom update d

unless equipment is added, removed, or upon failure. This is a multi -level process:

individual infrastructure resources announce themselves to their immediate controllers,

and controllers consolidate information towards the R esource Orchestrator. In addition,

resource virtualization might be applied in order to shield lower layer details to higher

layers. Resource virtualization might occur at the level of compute and/or network

controllers, the Controller Adapter or the Resource Orchestrator. More volati le information

such as monitoring results on network links or Network Function utilization may be updated

several times per second. High-volume data might be aggregated and modelled statistically

to reduce the rate of updates.

 Co-Rm reference point 6.2.1.1

Much, if not most, of the resource data such as available CPUs, RAM memory, link

bandwidth originates from the Infrastructure Layer , where each node has to discover its

own resources and capabilities. The Infrastructure Layer encompasses all networking,

compute and storage resources. By exploiting suitable virtualization technologies this layer

supports the creation of virtual instances (networking, compute and storage) out of the

physical resources. Primarily, three domains of physical resources are considered:

ɻ Universal Node (see D5.2 for details)

ɻ SDN enabled network nodes (like OpenFlow switches)

ɻ Data Centres (like controlled by OpenStack)

Exactly which resources these are depend on the type of infrastructure node but some

examples may be network interfaces, CPUs, RAM and persistent memory, and other

hardware resources such as acceleration cards for offloading packet processing or TCAMs

for storing forwarding entries.

Detailed information about these resources might not be needed or allowed by the higher

layer. Instead the virtualization functionality is responsible for providing a customized

resource view for particular higher layer consume rs and for required policy enforcements .

In the case of an OpenFlow-enabled switch it is the OpenFlow agent software running on

the device that provides this functionality . It hides the low -level resource details

concerning RAM & TCAM memories and physical ports and maps them to parts of the

conceptual OpenFlow switch. So, for example , instead of providing detailed information

about such memories they are shown as FlowTables with a maximum number of entries

(depending on the size of the memor y). Similarly, not all physical ports may be shown to

the higher layer, but only those enabled as part of the OpenFlow switch.

46 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

How the virtualization is represented and transferred to the higher layers not only depend

on the type of device but also on the protocol and pr otocol version used (see A.2.3.1.1).

The nature of the information is also different among different technologies. For example ,

an OpenFlow-enabled switch can rep ort which network ports it has but it doesnõt include

any link information . Such information has to be discovered by higher layers using for

example link discovery protocols such as LLDP [LLDP].

 Ca-Co reference point 6.2.1.2

The role of network and compute controllers is to consolidate and expose the collection of

individual infrastructure resources of their corresponding domain towards the Controller

Adapter. This not only involves resource fully contained within their domain , but also the

exposure of interfaces towards other domains. As controllers might interface with multiple

parties, they might virtualize the consolidated resources as part of this process. This

enables hiding of lower layer details, as well as resource sli cing setups.

Figure 6.6: Bottom-up information flow at Ca -Co reference point

Figure 6.6 depicts the bottom -up infor mation flow where two compute controllers

(corresponding to UNs) and one SDN (network) controller expose information towards the

Controller Adapter. This enables the Controller Adapter to consolidate the information

towards the Resource Orchestrator (next section).

47 D3.1 Programmability framework 14.11.2014 version 1.0
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission.

 Or-Ca reference point 6.2.1.3

Figure 6.7: Bottom-up information flow at Ca -Ro reference point

The Orchestration Layer is split into two sub-components: resource orchestration and

controller adaptation. The resource orchestration is a logically centralized function.

Below, there could be many underlying controllers corresponding to different domains or

technologies in practice. The controller adaptation is responsible to bridge between the

controllers and resource Orchestrators. It offers technology independent, virtualized

resources and resource information. Hence, the resource orchestration collects and

harmonizes virtualized resources and resource information into a global virtualized

resource view at i ts compute, storage and networking abstraction. It is important to note

here, that the aim of the resource orchestration is to collect global resource view.

The global resource view in the Orchestrator consists of four main components; forwarding

elements, compute host capabilities, hardware based or accelerated Network Function

capabilities, and the data plane links that connect them. All of the resources must have

associated abstract attributes (capabilities) for the resource provisioning to work.

In order to obtain this global view, consolidation might happen at different layers. While

individual controllers might expose a virtualized view of the underlying resources and

topologies, the consolidated view might rely on discovery mechanisms to detect furth er

details, e.g., links (cfr. LLDP in previous paragraph). For example, Figure 6.7 illustrates

the consolidated topology integrating the received views from the individual controllers

(cfr. Figure 6.6) into one global topology.

Another type of resource that has to be discovered is Service Access Points (SAPs)

representing devi ces connected to providing interconnection to customer networks.

